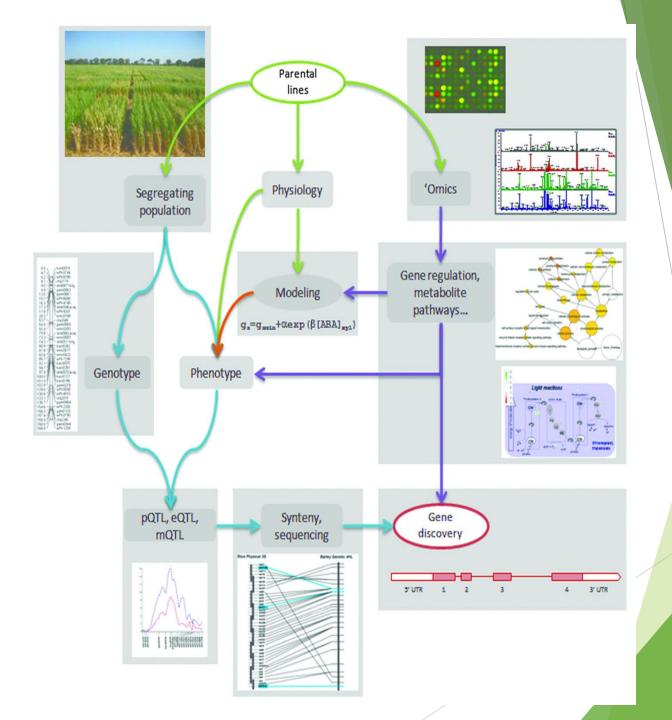


Potencialidades del uso de las New Breeding Techniques (NBTs) en la agricultura:

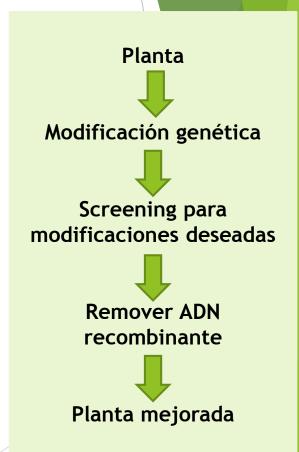

Capacidades disponibles en Chile

Dr. Simón Ruiz Lara sruiz@utalca.cl

Instituto de Ciencias Biológicas Universidad de Talca

New Plant Breeding Techniques (NPBTs)

Nuevas técnicas más precisas y rápidas para el mejoramiento vegetal


• Uso de la modificación genética, pero el producto vegetal final no contiene ADN foráneo.

New Plant Breeding Techniques (NPBTs)

Las NPBTs pueden producir tres tipos de mejoras

- 1. Plantas que contienen un nuevo ADN fragmento (copia del gen existente)
- 2. Plantas que no contienen un nuevo fragmento de ADN, pero tiene un mutación o modificación en su propio ADN
- 3. Plantas mejoradas que no contienen un nuevo fragmento de ADN o modificación de su ADN

Métodos

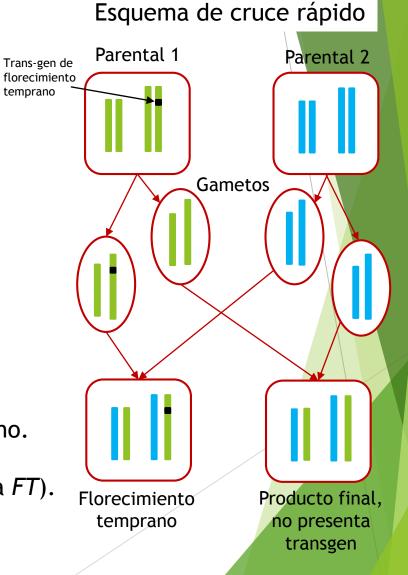
Floración temprana inducida (cruces más rápidos con una línea transgénica)

Cisgenia (transformación de plantas con genes de especies compatibles entre sí)

ARN interferente y técnicas asociadas

Mutagénesis dirigida: "mutagénesis sitio dirigida", "edición del genoma (gen)"

Requerimientos previos

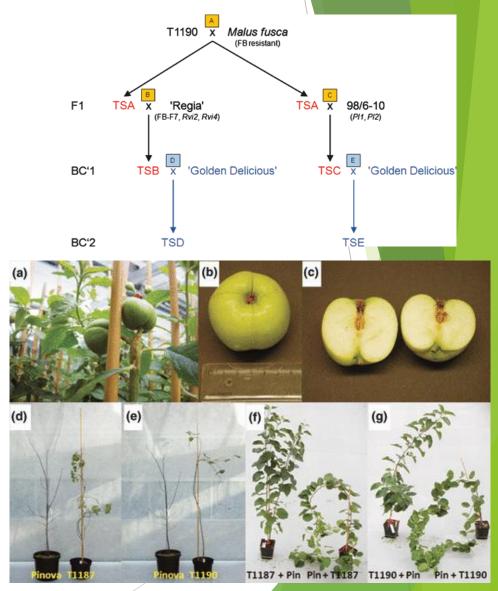

- Técnicas de cultivo in vitro
- Transformación genética
- Conocimiento de los genomas a trabajar
- El mejorador trabaja de forma directa y específica con variaciones moleculares que están vinculadas a (o que generan) fenotipos de interés agronómico.
- Información clave: Los genomas.

Floración temprana inducida

- El cultivo de árboles frutales requiere mucho tiempo debido al tiempo de generación (3-10 años)
- La expresión ectópica de genes implicados en la floración puede inducir la floración temprana
- Permite un cruce rápido, p. Ej. para apilar genes de resistencia

Genes:

- > FUL (BpMADS4) de abedul en manzano.
- > FT (PtFT1) de álamo en ciruela.
- Silenciamiento de TFL1 (acompaña a FT).



Floración temprana inducida

Manzano "speed breeding"

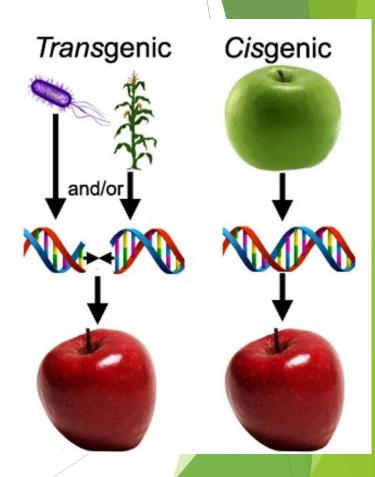
Apilamiento de genes de resistencia:

- Cruce de 1^a generación con Malus fusca (resistencia a fire-blight)
- Cruce de 2ª generación con el cv. "Regia" (resistencias: 2 scab y 1 resistencia adicional a fire-blight)
- Cruce de tercera generación con "Golden Delicious":
 - Detección de genes de resistencia mediante marcadores de ADN.
 - Selección final de "segregantes nulos"

Floración temprana inducida

Sobreexpresión de *AtFT* + silenciamiento de *TFL* usando como vector el virus esférico latente de la manzana (ALSV) :

- No transformación del genoma de la manzana
- Infección de plántulas con virus vector: 90% de flores fértiles en 1,5 a 3 meses
- El virus no se transmite a través de semillas, por lo tanto progenie libre de transgenes

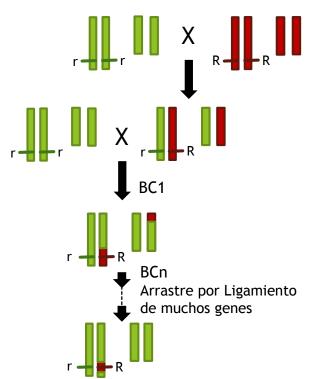


Introducción de nuevos rasgos de especies compatibles cruzadas mediante modificación genética

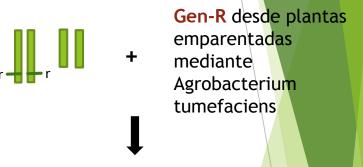
Uso de genes con su propio promotor y secuencias de terminación de la propia especie de cultivo o parientes silvestres que se pueden cruzar con el cultivo especies

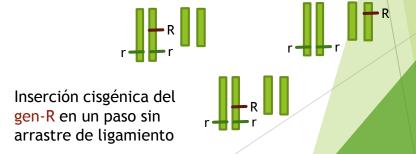
Atractivo para cultivos de difícil reproducción basados en cruces convencionales.

- Ej. papa (heterocigoto, 4x) y árboles frutales (tiempo de generación prolongado, 3-10 años antes de la primera floración)
- Se mantienen los rasgos de élite de los cultivos propagados por clones.



Introgresión clásica de un solo gen R en papa, Rpi-blb2, resultó en nuevas variedades resistentes después de casi cincuenta años





Lento y múltiples pasos

Tres replicas de la inserción

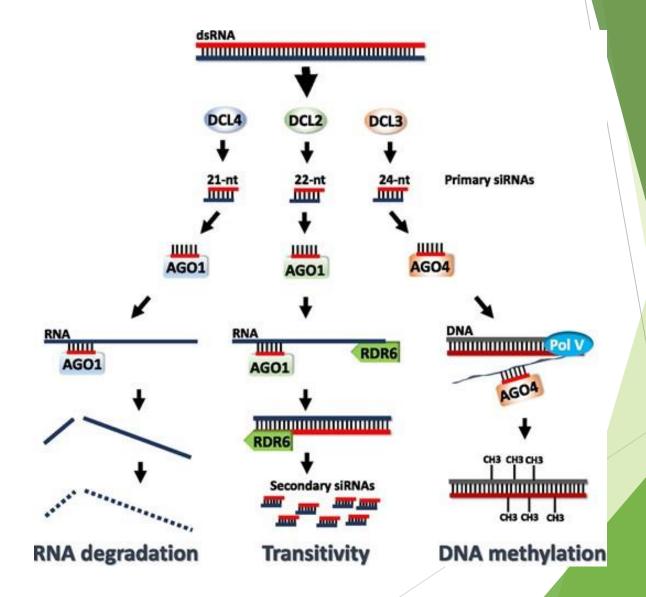
Resistencia de la papa a tizón tardío

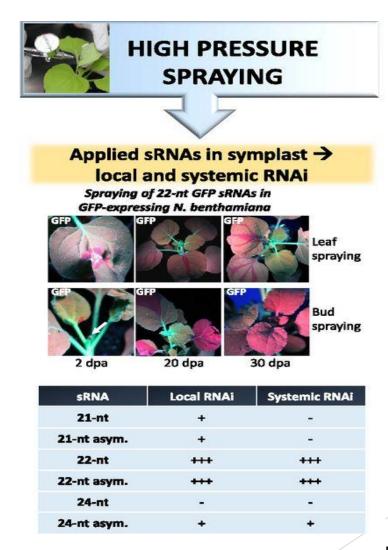
26 genes Rpi identificados, en 9 grupos de especificidad diferentes

Stacking de genes R, ejm.:

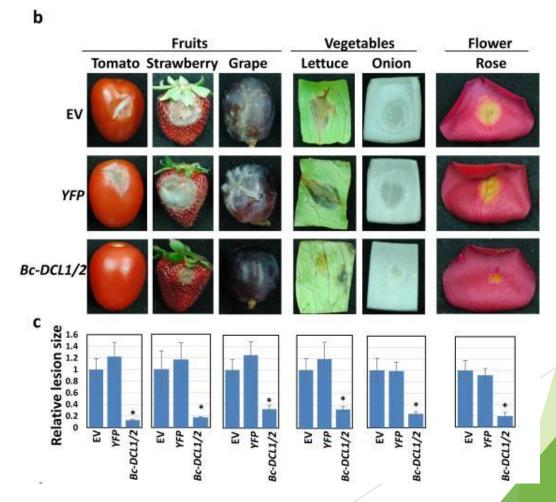
- Rpi-sto1 (desde S. stoloniferum)
- Rpi-blb3 (desde S. bulbocastanum)
- Rpi-vnt1.1 (desde S. venturii)

Las plantas de papa se cultivaron en un invernadero para realizar estudios moleculares a fin de probar si los genes de resistencia se insertaron con éxito y para establecer que no se desvían de la variedad original.




Las plantas con hasta tres genes de resistencia insertados pueden defenderse contra Phytophthora.

Prueba de campo de demostración con variedad Désirée que contiene un número variable de genes R



Métodos para la liberación de RNA en plantas, no GMO.

Los Bc-DCL1/2-sRNA y -dsRNA aplicados externamente (spray) inhibieron la virulencia de patógenos (*B. cinerea*) en frutas, verduras y pétalos de flores

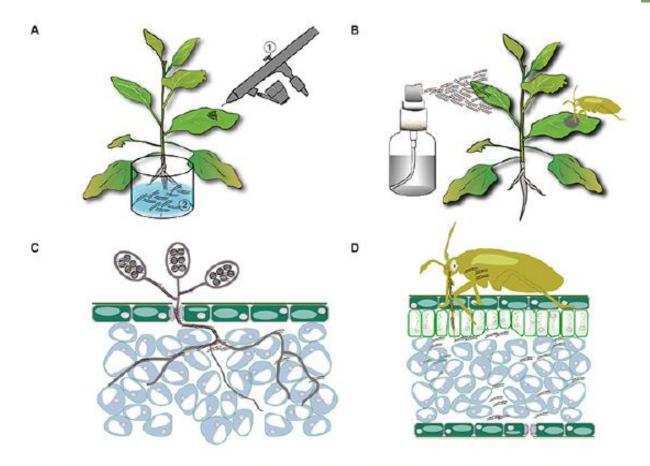
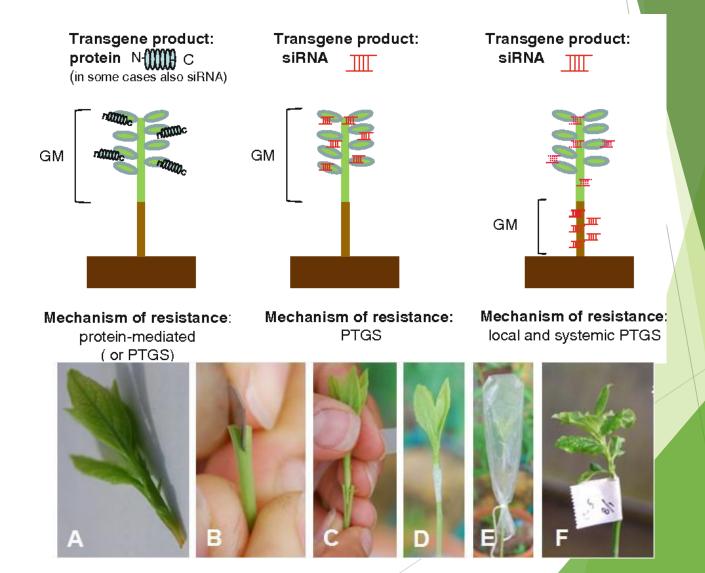
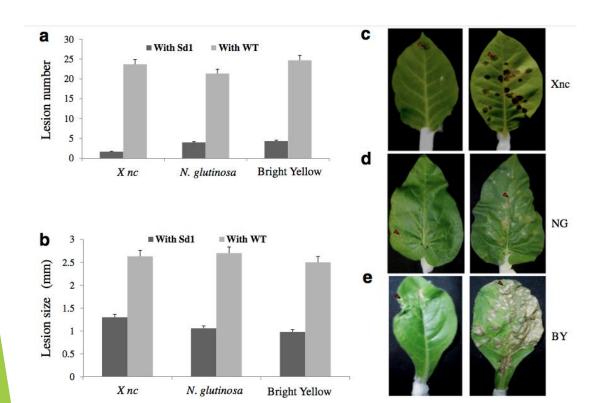
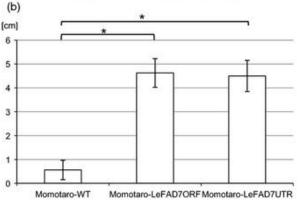




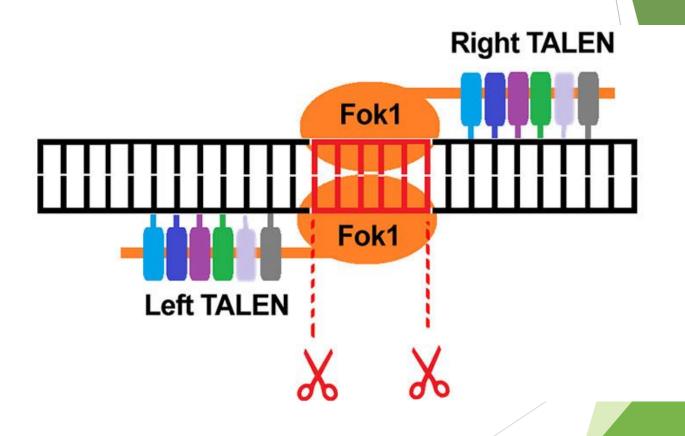
Figure 1. Illustration of means of delivery of dsRNA for modulation of plant traits and plant protection. A. High pressure spraying of dsRNA using an airbrush (1) and delivery of dsRNA through irrigation (2) for plant trait modulation to achieve intracellular delivery. B. Automizer assisted low-pressure spray results in apoplastic delivery of dsRNA allowing fungal, oomycete pathogens, pests/insects to take up dsRNA (C, D).

Portainjertos



La transmisión de la señal de silenciamiento de ARN a través del injerto confiere resistencia al virus de tabaco

Portainjerto reciproco entre wild-type y plantas de tabaco Sd1-RNAi para la resistencia a tobamovirus

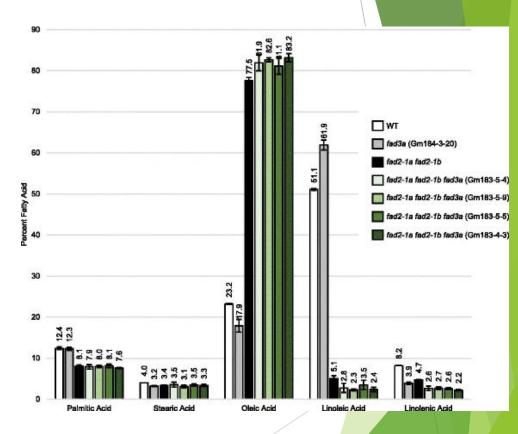


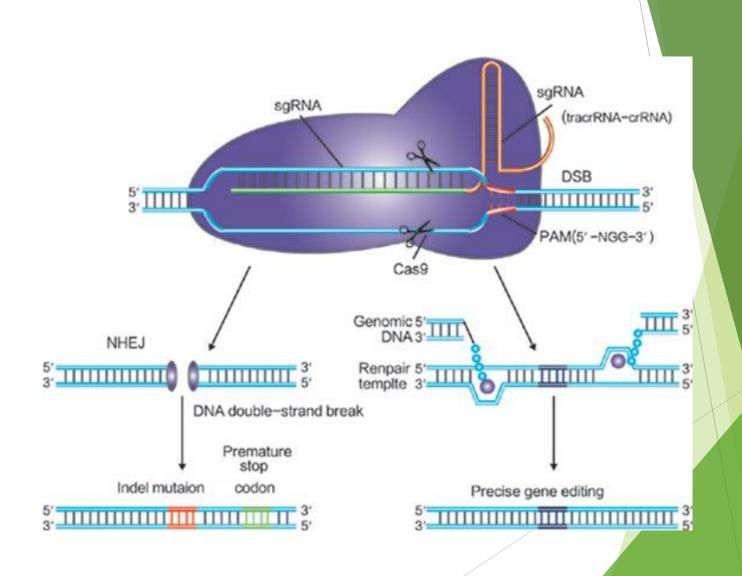
Generación de tolerancia a altas temperaturas a vástagos de tomate no transgénicos mediante la transmisión por injerto del silenciamiento del ARN del gen de la desaturasa de ácidos grasos

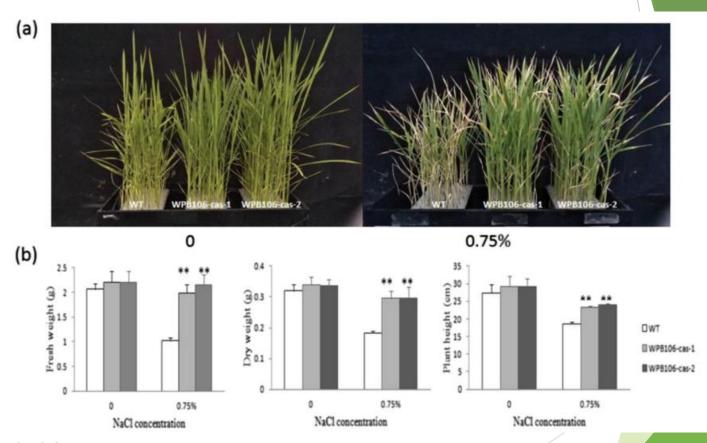
LeFAD-RNAi

Mutagénesis dirigida: TALEN

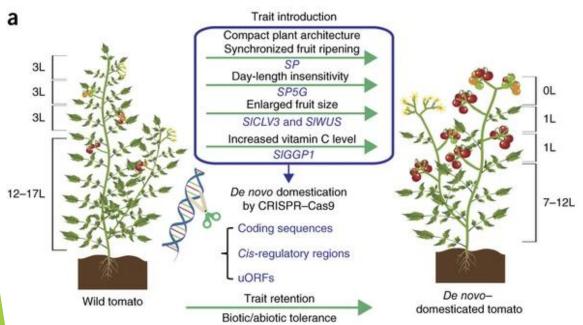
Transcription activator-like effector nuclease


Mutagénesis dirigida: TALEN

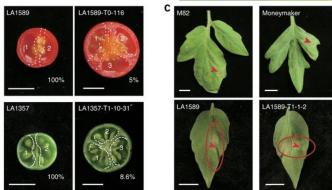

Mejoramiento de la composición de ácidos grasos en soya

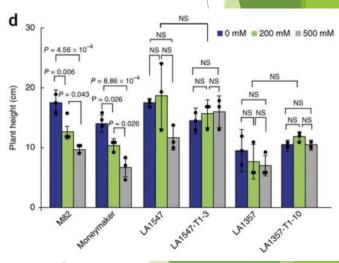

Más oleico Menos linolénico

Target: fatty acid desaturase 2-1A



Incremento de la tolerancia a estrés salino en Arroz




Target: OsRR22

Domesticación de tomate silvestre (S. pimpinellifolium) es acelerado por CRISPR/cas

La progenie Cas9-free de plantas editadas tiene un fenotipo domesticado, pero aún mantiene la tolerancia a estrés salino y la resistencia a enfermedades del parental

Híbridos de maíz ceroso

- Fundamental para el desarrollo futuro de productos
- Primer producto agrícola comercial
- Comercializado a finales de la década actual

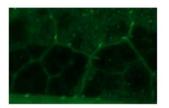
BROAD AGRICULTURAL APPLICATIONS OF CRISPR-CAS

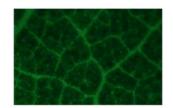
	DISEASE RESISTANCE	YIELD & YIELD STABILITY	DROUGHT TOLERANCE	OUTPUT TRAITS	MATURITY
CORN	•	•	•		•
SOY	•			•	•
CANOLA	•			•	
RICE	•	•	•		•
WHEAT	•	•			
SUNFLOWER	•			•	

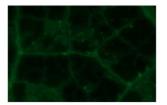
Capacidades disponibles en Chile

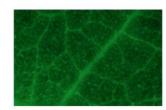
Mejoramiento genético de las características post-cosecha relacionadas con el endulzamiento inducido por frío en tubérculos de papa, mediante el uso de la tecnología de edición de genoma CRISPR/Cas9

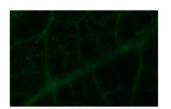
INIA La Platina

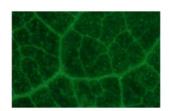



- 1. Diseñar y validar editores génicos para los genes StBAM1, StBAM9 y StvacINV1 de papa.
- 2. Generar líneas de papa editadas para los genes StBAM1, StBAM9 y StvacINV1.
- 3. Evaluar las características post-cosecha de los tubérculos provenientes de líneas editadas, durante su almacenamiento a bajas temperaturas.




a-miRNA injerto **GFP patrón**



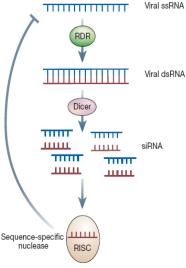


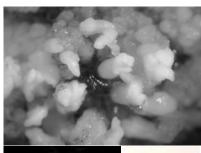
Plant Abiotic Stress for a Sustainable Agriculture

Dra. Claudia Stange

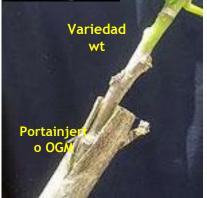
Académica UdeChile Presidente Sociedad Biología Vegetal

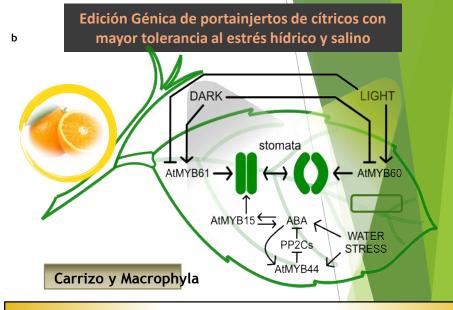
Seleccionar genes maestros para desarrollar nuevos portainjertos de kiwis y tomates -mediante la técnica de edición génica CRISPR/Cas9- resistentes al estrés abiótico.




Mejoramiento Genético de Cítricos y Vides Mediante NBts

Patricio Arce; Pontificia Universidad Católica de Chile


Generación de Portainejrtos de vides resistenes a virus mediate Silenciamiento Génico Post Transcripcional



Evaluación en Invernadero y Desierto Atacama, Chile

Experiencia y capacidades científicas

Coinvestigadora Proyecto Fondecyt Regular (2021-2024) PI: Daniel Calderini

"Unravelling the mechanisms controlling the trade-off between grain weight and grain number to improve yield and crop adaptation of wheat"

 Trabajo con Líneas transgénicas de trigo harinero (UACh) y NILs y líneas mutantes provenientes del John Innes Centre (UK)

Fundadora Start-up NeoCrop Technologies (2020-Presente)

http://www.neocroptech.com/

Combinamos las tecnologías más avanzadas de edición genética, speed breeding e inteligencia artificial para revolucionar y acelerar los programas de mejoramiento tradicional. Nuestro enfoque se aplica en trigo y tiene gran potencial para ser adaptado en hortalizas, frutales, y otros cultivos de interés.

Desarrollo de trigo harinero alto en fibra mediante edición genética
 Trabajo conjunto con la empresa Campex Baer (financiado por CORFO)

Francisca M. Castillo
Bioquímica, Dra. en Cs Agrarias
Investigadora Postdoctoral
Plant Nutrition and Genomics Lab
UACh – iBio

CEO, Research Director NeoCrop Technologies

fmcastillocastro@gmail.com

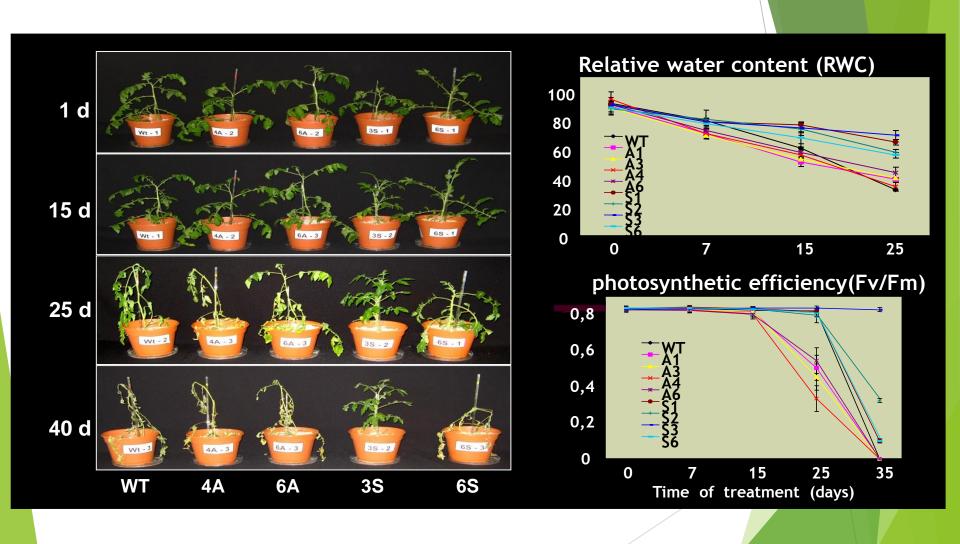

Investigaciones en cultivos GM soportados y financiados por el sector público chileno

Table 4
GM crops research supported and funded by the public sector in Chile.

	Crop	Trait	Main Institution	Public support (US\$)	Public financial source	Starting year
1	Table grape and stone fruits	Fungus and virus resistance	INIA	696,436	CORFO	2013
2	Apple	Biofortified (Vit A)	U. de Chile	455,263	FONDEF	2012
3	Citrus	Salinity	PUC	200,361	CORFO	2011
4	Table grape	Quality	INIA	1,852,036	FONDEF	2010
5	Cherry	Reapening and diseases resistance	INIA	1,177,856	FONDEF	2010
6	Maize	Drought tolerance	U. de Talca	701,698	FONDEF	2009
7	Canola	Biofortified (Carotenoids)	INIA	147,908	FONDECYT	2009
8	Apple	Fungus resistance and quality	INIA	842,750	CORFO	2008
9	Table grape	Seedless	INIA	512,000	CORFO	2008
10	Table grape	Fungus resistance	UTSFM	1,391,474	FONDEF	2007
11	Peach and nectarines	Virus resistance	INIA	129,769	CONICYT	2007
12	Apple	Sweetness	PUC	402,002	CORFO	2007
13	Potato	Drought and freeze tolerance	INIA	104,391	FONDECYT	2007
14	Eucalyptus	Drought tolerance	INIA	1,039,272	CORFO	2006
15	Table grape	Fungus and virus resistance	INIA	475,225	CONICYT	2006
16	Table grape	Drought tolerance	CEAZA	928,339	CORFO	2005
17	Plum and peach	Virus resistance	Fundación Chile	718,951	CORFO	2002
18	Wheat	Phosphurus intake	INIA	194,394	FIA	2002
19	Tomato	Freeze, drought and salt tolerance	U. de Talca	181,510	FIA	2002
20	Pinus	Botritys resistance	Fundación Chile	246,757	CORFO	2002
21	Pinus	Herbicide tolerance	Fundación Chile	149,506	CORFO	2002
22	Eucalyptus	Fungus resistance	UFRO	222,541	CORFO	2001
23	Table grape	Fungus resistance	INIA	327,591	FONDEF	2001
24	Eucalyptus	Freeze tolerance	UFRO	299,242	CORFO	2001
25	Tomato	Insect resistance	UTFSM	106,022	FONDECYT	2000
26	Table grape	Fungus resistance	INIA	402,982	FONDEF	1999
27	Plum	Virus resistance	INIA	76,234	FONDECYT	1999
28	Pinus	Insect resistance	Fundación Chile	726,959	CORFO	1998
29	Potato	Abiotic stress tolerance	USACH	196,160	FONDECYT	1997
30	Potato	Bacteria resistance	INIA	242,561	FONDEF	1996
31	Melon	Virus resistance	INIA	129,217	FONDECYT	1995
32	Potato	Bacteria resistance	PUC	976,473	FONDEF	1991
			Total	16,253,823		

^{*} US Dollar (US\$) to Chilean Peso Rate adjusted per year (http://www.sii.cl/pagina/valores/dolar/dolar2015.htm).

Aumento de la tolerancia a défict hídrico

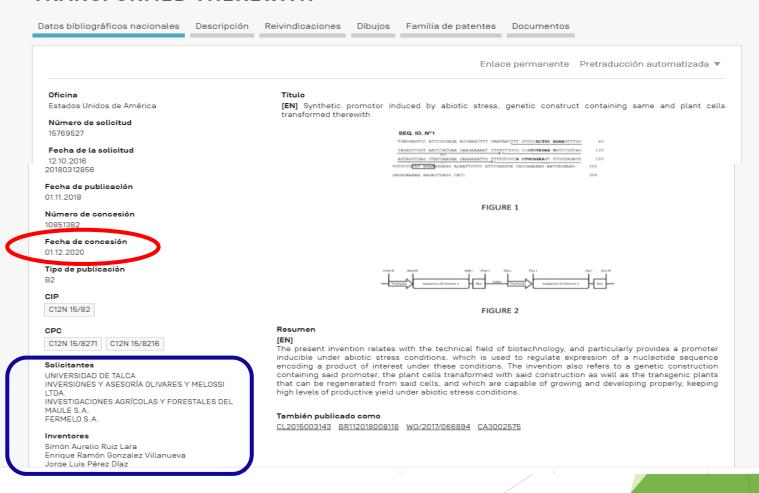
Plants SC 10.7 with and without ears in the severe drought treatment

Transgenic

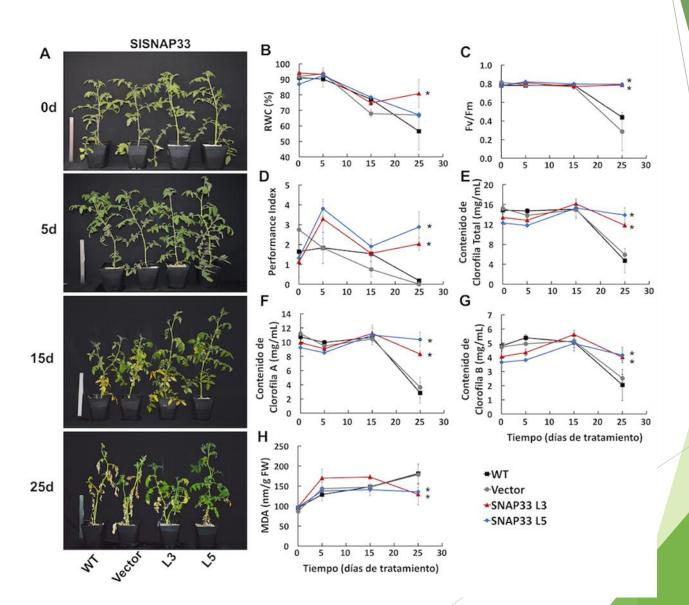
Null segregant

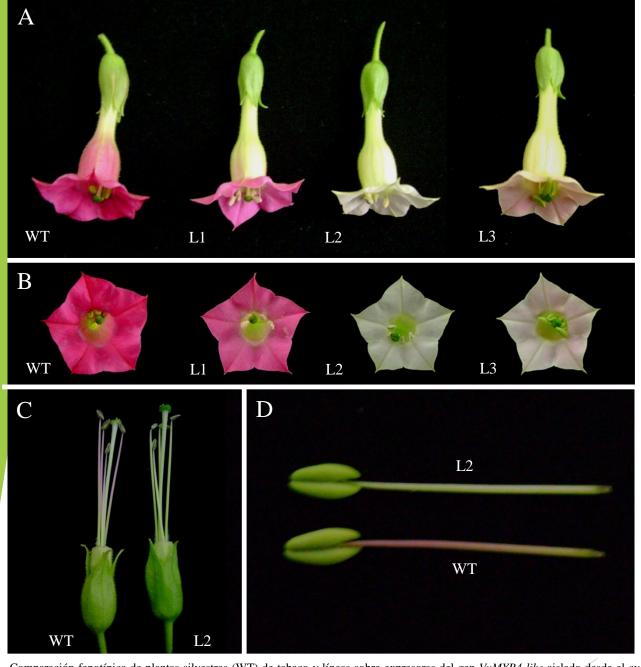
Plantas SC en tratamiento de sequía muy severa

Segregates Nulas Transgénicas


Comentarios Búsqueda ▼

Navegar ▼


Herramientas ▼


Configuración

1. US20180312856 - SYNTHETIC PROMOTOR INDUCED BY ABIOTIC STRESS, GENETIC CONSTRUCT CONTAINING SAME AND PLANT CELLS TRANSFORMED THEREWITH

Líneas transgénicas de tomate tolerantes a la salinidad para uso como portainjertos

Expresión de *VvMYB4-like* en *N. tabacum* afecta la pigmentación de las flores.

Comparación fenotípica de plantas silvestres (WT) de tabaco y líneas sobre-expresoras del gen *VvMYB4-like* aislado desde el cv Carmenere. Pigmentación de las flores de plantas WT y tres líneas transgénicas que sobre-expresan *VvMYB4-like* (A-B). En C, se observa la pigmentacion de los filamentos de los estambres de WT y una línea transgénica, mientras que en D, el detalle de un estambre.

Productos vegetales evaluados por la agencia reguladora chilena, SAG, bajo el alcance del enfoque regulatorio para NBT.

Species	Phenotype	Methodology	
Brassica napus	Silique shatter resistance	CRISPR	
Brassica napus	Silique shatter resistance	CRISPR + RTDS	
Camelina sativa	Change in fatty acid composition	CRISPR	
Gycine max	Change in fatty acid composition	TALEN	
Gycine max	Change in fatty acid composition	TALEN	
Zea mays	Change in starch composition	CRISPR	
Zea mays	Drought tolerance RdDM		
Zea mays	Drought tolerance; increase yield	RdDM	

RdDM: RNA-directed DNA methylation;

TALEN: transcription activator-like effector nuclease;

CRISPR: clustered regularly interspaced short palindromic

repeats;

RTDS: Rapid Trait Development System.

SITUACIÓN EN CHILE: EDICIÓN DE GENOMAS

PROYECTOS DE I+D EN EJECUCIÓN

Organism	Trait	Technique	Result (SDN- 1,2,3)	Current Stage (1, 2, 3, 4, 5)	Institution	Publication
Stone fruit	Fungal disease resistance	CRISPR/Cas9	SDN-1	Early R&D (5)	INIA/Biofrutales	no
Vitis vinifera	Virus resistance	CRISPR/Cas9	SDN-1	Early R&D (5)	INIA/Biofrutales	no
Stone fruit	PPV resistance	CRISPR/Cas9	SDN-1	Early R&D (5)	INIA/INRAE	no
Lactuca sativa	Non-browning	CRISPR/Cas9	SDN-1	Early R&D (5)	PUC	no
Malus domestica	Non-browning and high pro- vitamin A content	CRISPR/Cas9	SDN-1	Early R&D (5)	UdeChile/Biofrut ales	no
Solanum tuberosum	Sugar content	CRISPR/Cas9	SDN-1	Early R&D (5)	INIA	no
Vitis vinifera	Fungal disease resistance	CRISPR/Cas9	SDN-1	Early R&D (5)	INIA/Biofrutales	no
Oryza sativa	Yield	CRISPR/Cas9	SDN-1	Early R&D (5)	INIA	no
Solanum tuberosum	Fungal disease resistance	CRISPR/Cas9	SDN-1	Early R&D (5)	INIA	no
Solanum lycopersicum	Drought and salinity tolerance	CRISPR/Cas9	SDN-1	Early R&D (5)	UdeChile	no
Actinidia deliciosa	Drought and salinity tolerance	CRISPR/Cas9	SDN-1	Early R&D (5)	UdeChile	no

Gracias por su atención

Dr. Simón Ruiz Lara sruiz@utalca.cl

Instituto de Ciencias Biológicas Universidad de Talca

