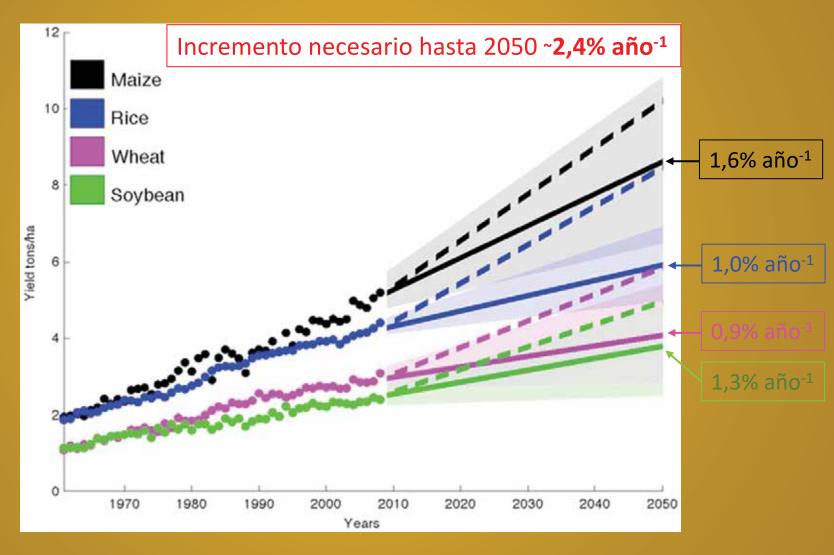
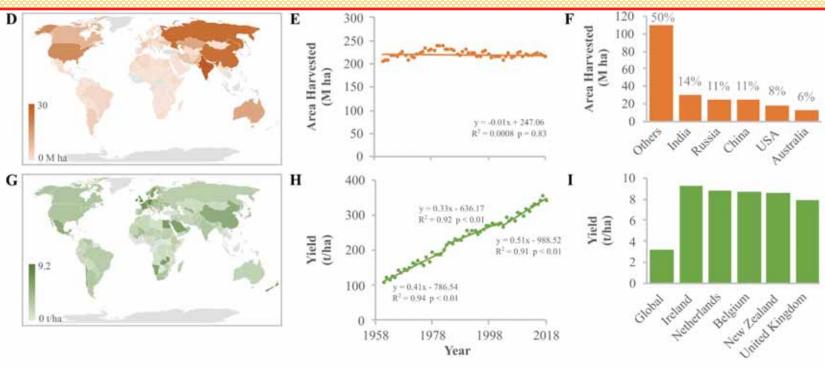

Estrategias para incrementar el rendimiento de trigo quebrando el *trade-off* entre el peso y el número de granos

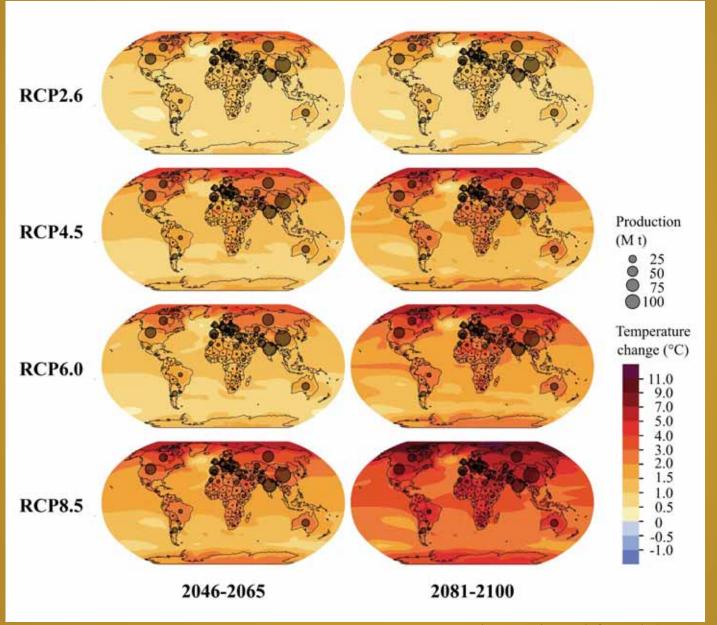

Estructura de la Presentación

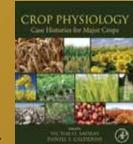
- Desafíos que enfrenta la producción de trigo y los cultivos en general
- El mejoramiento genético de trigo y limitaciones para el éxito futuro
- Trade-offs entre los componentes del rendimiento de trigo
- Bases fisiológicas y moleculares de la determinación del peso de los granos en trigo
- Un ejemplo del quiebre del *trade-off* entre el peso y el número de granos en trigo
- Trabajos actuales y futuros

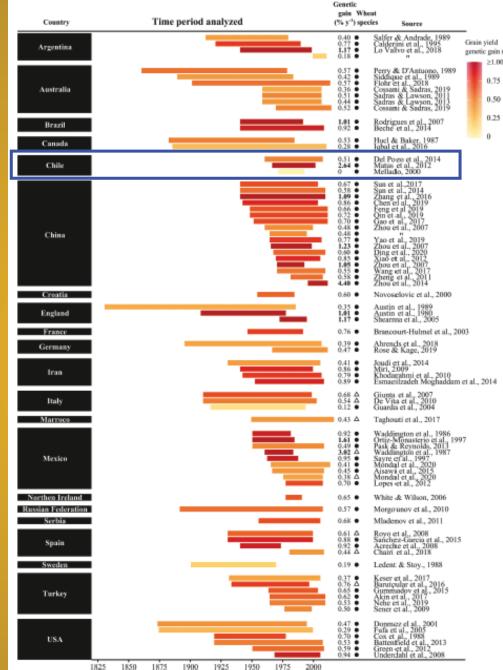
El Desafío de la Seguridad Alimentaria


- El rendimiento incrementarse ~6 mantener la segu et al., 2017; Fischer &
- El trigo provee proteínas de especialmente im d

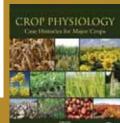
El Desafío de la Seguridad Alimentaria

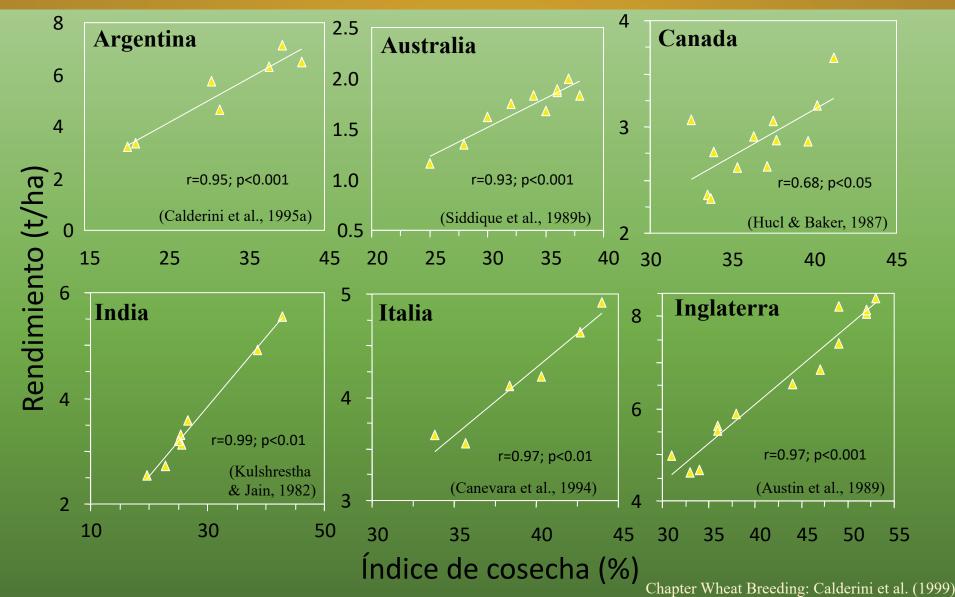

Producción, Área y Rendimiento Mundial de Trigo


Existe consenso internacional que la alternativa para lograr la seguridad alimentaria es el incremento del rendimiento

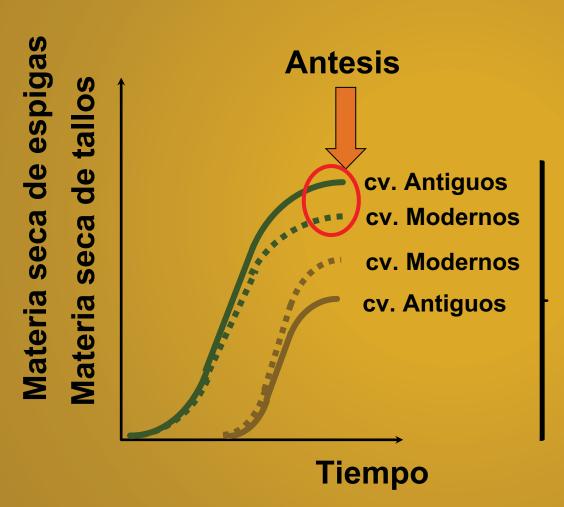


El Desafío del Cambio Climático Global




El mejoramiento genético como motor del incremento del rendimiento, en un contexto de cambio climático y sostenibilidad

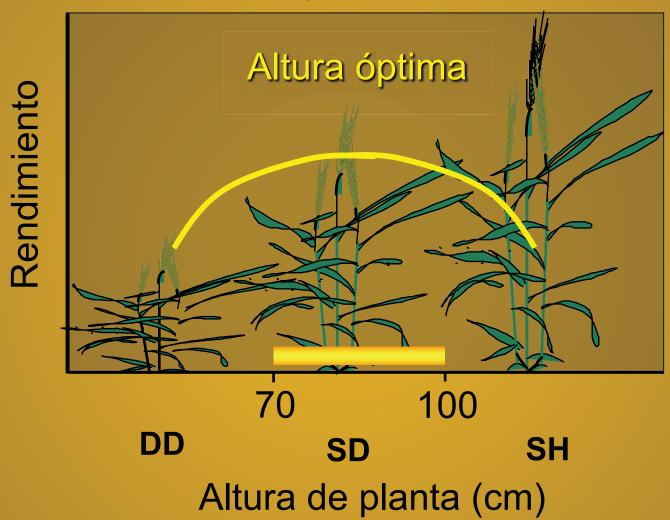
El incremento del índice de cosecha fue la principal causa del aumento del rendimiento



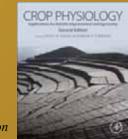
Wheat Ecology and Physiology

Cambios en la partición de biomasa de cultivares argentinos liberados en distintos años

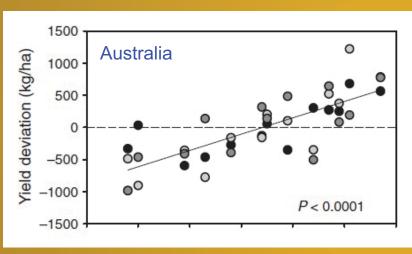
Año de	Rendimiento	Tallos		
liberación	(g m ⁻²)	(g m ⁻²)		
1920	319.9	839.1		
1990	649.1	496.4		
Diferencia	+ 329.3	- 342.7		


Determinantes fisiológicos del impacto del mejoramiento sobre el rendimiento potencial

Mayor índice de cosecha

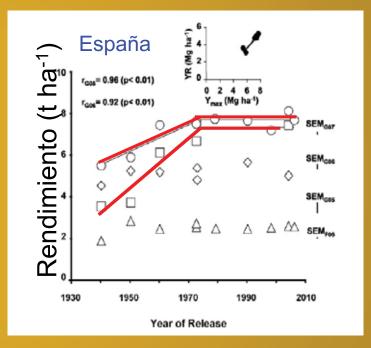

Mayor número de granos

Cultivos como trigo ya están en la altura óptima



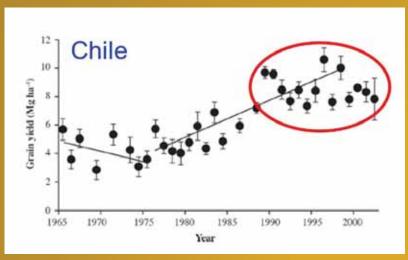
Partición de Biomasa Aérea en Trigo

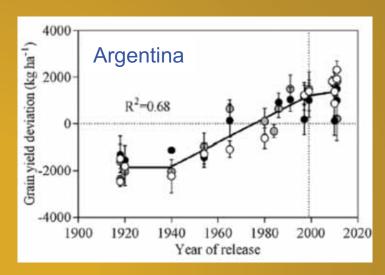
	Austin (1980)	et al.	Austin et _(1980)	t al.	Shearm al. (200		Consort Hereford	shire, UK	The be	st DH
	(4 most modern cvs.)		(Theoretical Maximum HI)		(4 most modern cvs.)		(Mean 1996/1997 and 1997/1998)		(Mean S1 and S2)	
Crop component	g m ⁻²	%	g m ⁻²	%	g m ⁻²	%	g m ⁻²	%	g m ⁻²	%
Grain	707	49	895	62	888	51	1,103	56	1,556	53
Chaff	143	10	181	13	171	10	195	10	329	11
Leaf lamina	139	10	139	10	151	9	183	9	273	9
Stem+sheaths	453	31	226	(15)	536	30	490	25	783	27
Biomass	1,442	-	1,141		1,746	<u> </u>	1,971	-//-/	2,941	



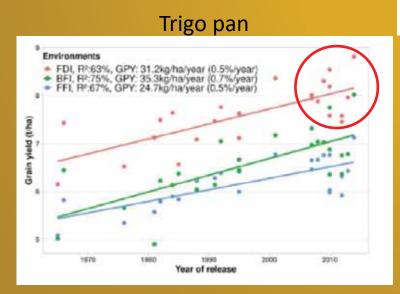
El mejoramiento genético en distintos países

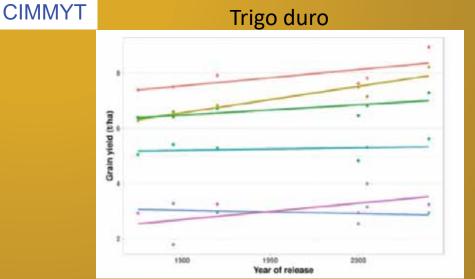
Sadras & Lawson (2011)


Crop & Pasture Science


Acreche et al. (2012)

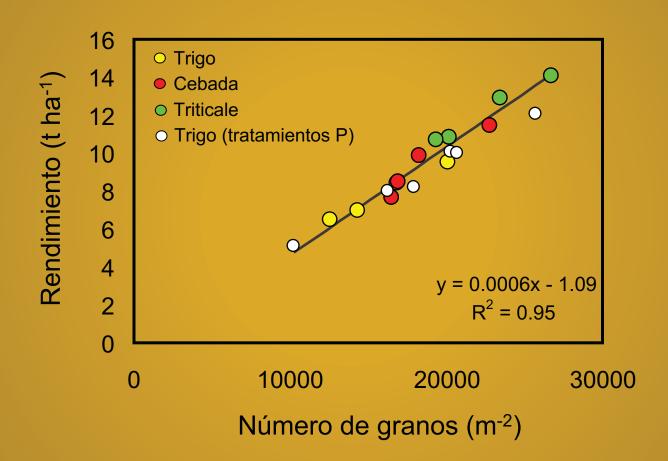
<u>European Journal of Agronomy</u>

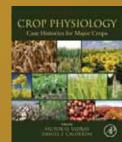

El mejoramiento genético en distintos países



Matus et al. (2012) Chilean Journal of Agricultural Research

Lo Valvo et al. (2018) Field Crops Research


Mondal (2020) Field Crops Research

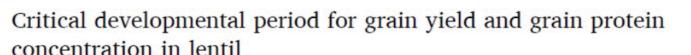

Aproximaciones al Rendimiento

Rendimiento = Número de granos m⁻² x PG promedio

Rendimiento = Biomasa x Índice de Cosecha

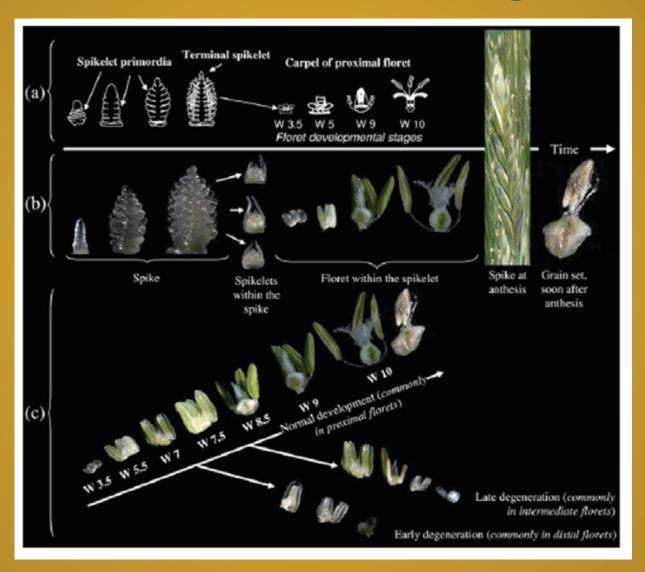
Relación entre el rendimiento y el número de granos en trigo, cebada y triticale

Período crítico para la determinación del número de granos en trigo



Contents lists available at ScienceDirect

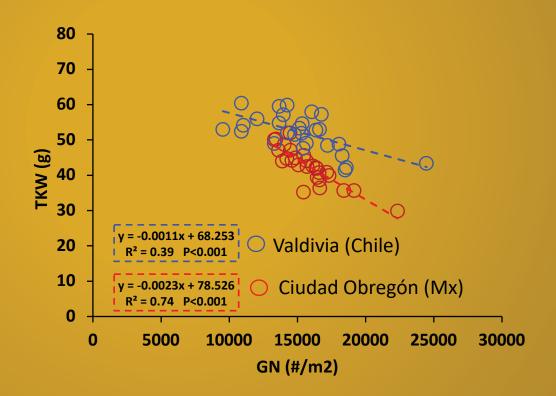
Field Crops Research



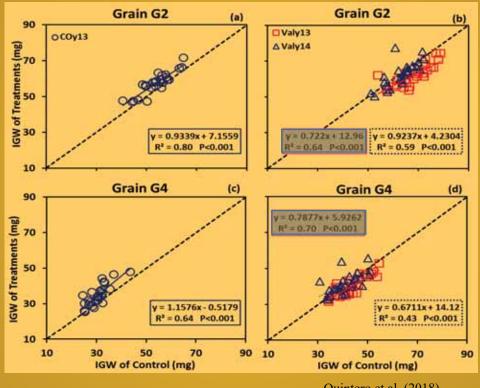
Lachlan Lake a, *, 1, Diego Godoy Kutchartt b, 1, Daniel F. Calderini b, Victor O. Sadras a

Darwin (1859) observed "..very trifling changes, such as a little more or less water at some particular period of growth, will determine whether or not the plant sets a grain". This notion of a critical developmental period has become a physiological paradigm, with agronomic practices seeking to reduce the likelihood of stress in the more sensitive stage for yield (Flohr et al., 2017; Lake et al., 2021).

^a South Australian Research and Development Institute, and School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Australia in Institute of Plant Production and Protection. Universidad Austral de Chile. Valdivia. Chile

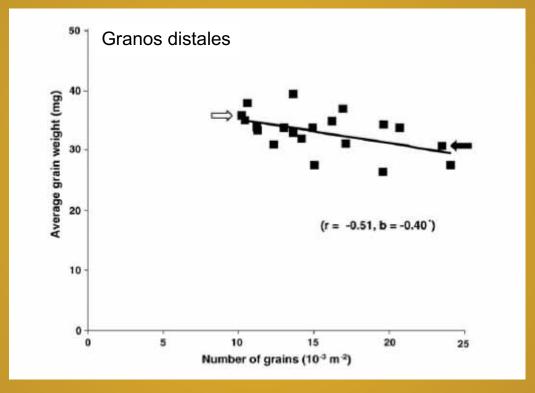

Evolución floral en trigo

El incremento del rendimiento en trigo y otros cultivos se enfrenta a un *trade-off* entre el peso el número de los granos


Asociación negativa entre el peso de grano y el número de granos en 27 genotipos elite de CIMMYT (CIMCOG) en Chile y México

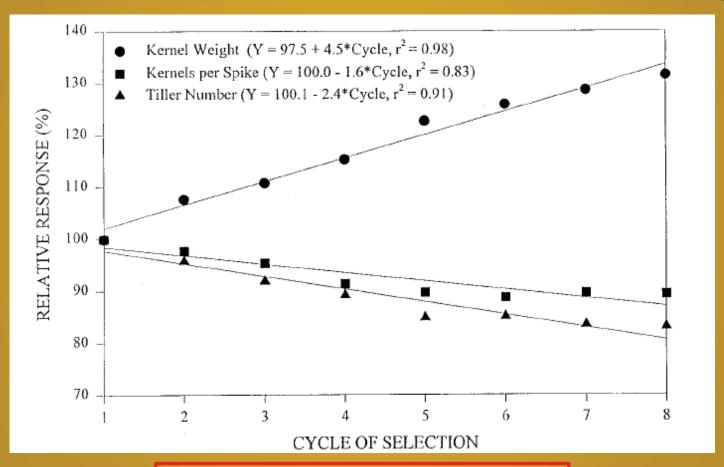
Otras evidencias de trade-off en trigo: Molero et al. (2019); Rivera-Amado et al. (2019)

El trade-off no es debido a limitaciones por la fuente de asimilados durante el llenado de los granos



Quintero et al. (2018) European Journal of Agronomy

El trade-off no es debido a limitaciones por la fuente de asimilados durante el llenado de los granos


Acreche & Slafer (2006) Field Crops Res.

Intentos de Incrementar el Rendimiento de Trigo Mediante el Aumento del Peso de Grano

Rendimiento, número de granos y peso de granos en cultivares de trigo chilenos

Genotipo	Rendimiento (Mg ha ⁻¹)	Número de Granos (Nº m ⁻²)	Peso de Grano (g)
Impulso Ba	aer 10,0	20.818	47,9
Fritz Baer	10,5	15.200	68,8

Efecto de la selección recurrente para peso de grano sobre los componentes del rendimiento en trigo

Ganancia en rendimiento ~0%

Trade-off entre peso y número de granos en líneas isogénicas de trigo con o sin presencia de un QTL mayor para PG

Table 1 Mean thousand grain weight (TGW), yield and grain morphometric parameters of 5A near isogenic lines (NILs)

Year	Genotype	TGW (g)	Yield (kg per plot)	Grain area (mm²)	Grain length (mm)	Grain width (mm)
2012	5A-	38.027	4.408	18.755	6.625	3.475
	5A+	41.554	4.437	19.930	6.900	3.557
		9.28%***	0.66% ^{ns}	6.26%***	4.15%***	2.35% **
2013	5A-	40.772	6.157	19.969	6.705	3.674
	5A+	43.544	6.159	20.979	6.963	3.727
		6.80%***	0.02 % ns	5.06%***	3.86%***	1.44% ***
2014	5A-	47.368	6.495	21.493	6.798	3.930
	5A+	50.729	6.636	22.579	7.063	3.979
		7.09%***	2.17%*	5.05%***	3.90%***	1.25% **
2015	5A-	42.734	7.582	18.044	6.426	3.479
	5A+	46.201	7.712	19.293	6.730	3.554
		8.11%***	1.72 % ns	6.93%***	4.72%***	2.16% ***
2016	5A-	49.292	5.974	19.829	6.580	3.735
	5A+	51.266	6.064	20.610	6.816	3.745
	200	4.00%*	1.50% ^{ns}	3.94%**	3.58%***	0.27% ns
Overall	5A-	43.639	6.123	19.618	6.627	3.659
	5A+	46.659	6.201	20.678	6.894	3.712
		6.92%***	1.28% ^{ns}	5.41%***	4.04%***	1.45% ***.1

¹Percentages (%) indicate amount gained in 5A+ NILs compared with 5A- NILs. Asterisks indicate significance determined by ANOVA for either each year, or across all years (final row). ns, nonsignificant; *, P < 0.05; **, P < 0.01;***, P < 0.001; 2012–2013, BC₂-NILs; 2014–2016, BC₄-NILs.

Trade-off entre peso y número de granos en líneas transgénicas de trigo

Milner et al. BMC Plant Biology (2021) 21:524 https://doi.org/10.1186/s12870-021-03294-x **BMC Plant Biology**

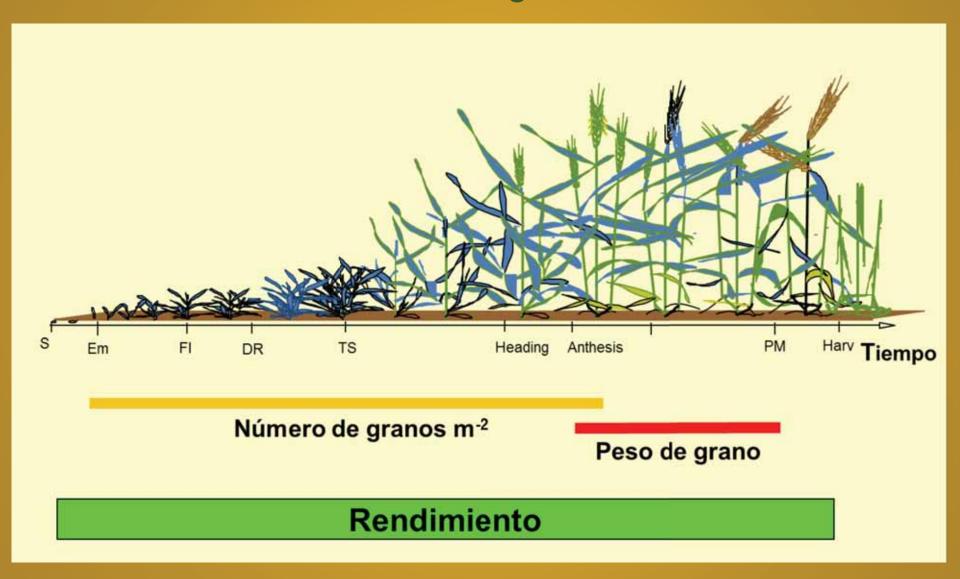
RESEARCH

Open Access

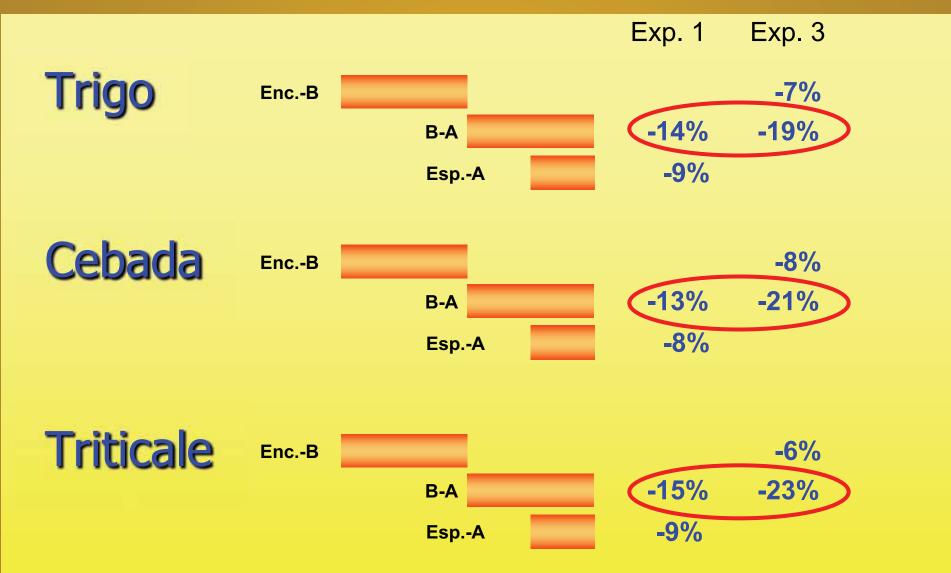
Ectopic expression of *TaBG1* increases seed size and alters nutritional characteristics of the grain in wheat but does not lead to increased yields

Matthew J. Milner*, Sarah Bowden, Melanie Craze and Emma J. Wallington

Fig. 3 Comparison of seed length and width in *TaBG1-A* overexpression lines. **A** Ten seeds from the three independent *TaBG1-A* overexpression lines aligned to show differences in length and width relative to WT Fielder. Scale bar = 1 cm. **B** Average grain length in three independent *TaBG1-A* over expression lines relative to WT Fielder. **C** Average grain width in three independent *TaBG1-A* overexpression lines relative to WT Fielder. *= p val. < 0.001 relative to WT Fielder.

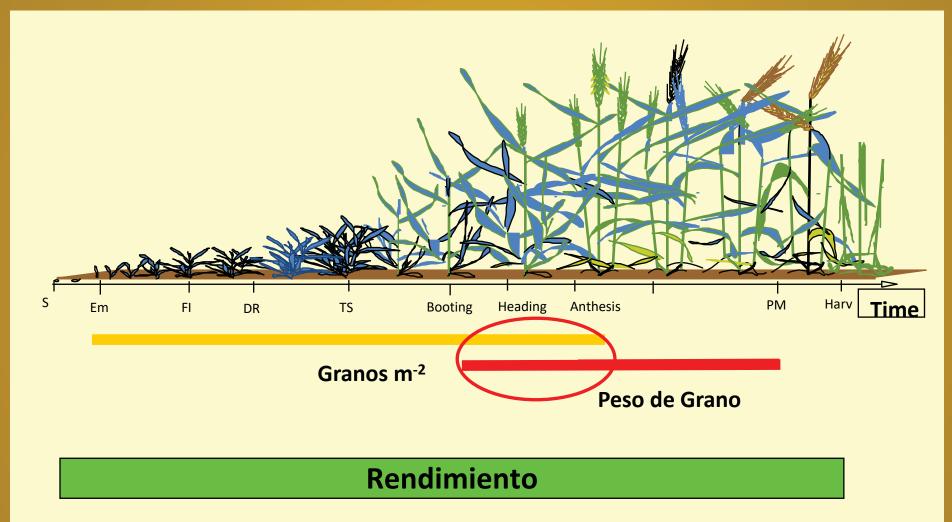

Consideraciones para entender la determinación del peso de grano en trigo y los genes que la controlan

La búsqueda de QTL (fishing?)

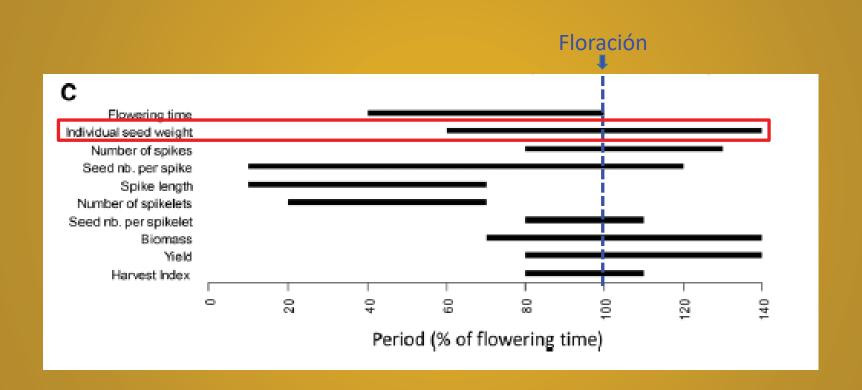

TABLE 1 QTLs for grain weight and size identified by all three mapping methods in the Jing 411/Hongman
--

	True 1 Q 1.5 for grain weight and size startined by an time mapping methods in the sing 4 in integral grain 2 in the population.									
Trait	QTL	Physical Interval (Mb) ^b	Representative Marker	No. of Environments	Method ^c	Peak Position (cM)	LOD or P-valued	PVE ^e (%)	Additive Effect	References
TGW	Qtgw.ahau-1B.1	648.1-652.1	1B-JHMfel	5	ICIM	184.0-185.0	3.27-4.38	5.4-8.0	1.46-2.23	Novel for TGW;
					GCIM	184.8-185.4	2.74-5.42	3.5-6.3	1.85-2.17	Cui et al., 2014
					NWIM	187.2	0.00	19.8	2.37	(KNS)
	Qtgw.ahau-2D	543.5-561.9	2D-5137	2	ICIM	60.0-62.0	3.27-6.45	8.2-8.5	2.03	Liu et al., 2018
					GCIM	61.5	3.52	5.0	1.94	
					NWIM	61.3	0.00	30.4	3.34	
	Qtgw.ahau-4B.1ª	540.3-542.9	4B-8621	5	ICIM	34.0-44.0	5.05-14.74	9.6-29.3	1.97-4.77	Novel
					GCIM	43.5	2.57-3.70	1.9-3.5	1.93-2.09	
					NWIM	35.0	0.00	17.8	4.13	
	Qtgw.ahau-4B.2ª	660.1-660.4	4B-9051	10	ICIM	115.0-116.0	3.37-10.25	5.2-23.2	1.47-3.26	Novel
					GCIM	115.2-116.2	2.80-8.63	2.6-15.0	1.63-3.10	
					NWIM	115.2	0.00	33.9	5.72	
	Qtgw.ahau-6B.1	677.7-679.6	6B-9077	3	ICIM	73.0	4.22	8.2	1.80	Li et al., 2019
					GCIM	73.3	2.86	3.7	1.96	
					NWIM	73.4	0.00	18.1	3.82	
GW	Qgw.ahau-2D.3ª	543.5-561.9	2D-5137	1	ICIM	62.0	8.36	14.0	0.09	Liu et al., 2018
					GCIM	60.5	4.98	14.7	0.10	
					NWIM	60.6	0.00	26.7	0.12	
	Qgw.ahau-4B.3ª	660.11-660.13	4B-9051	2	ICIM	116.0	4.21-14.27	11.0-20.7	0.06-0.10	Novel
					GCIM	116.2	3.44-7.31	8.1-26.0	0.09-0.17	
					NWIM	115.2	0.00	34.2	0.17	
GL	Qgl.ahau-2A.1ª	44.2-54.4	2A-CAPSmin	3	ICIM	105.0-107.0	6.54-8.96	13.8-15.5	0.21-0.25	Novel
					GCIM	103.8	6.42	10.4	0.22	
					NWIM	211.0	0.01	8.5	0.25	
	Qgl.ahau-4B.1	31.3-38.4	Marker13172883	2	ICIM	6.0	5.16-16.88	6.5-18.0	0.14-0.22	Garcia et al., 2019
					GCIM	6.3-7.2	4.75-3.68	2.1-5.3	0.12-0.20	
					NWIM	6.4	0.00	11.9	0.19	
	Qgl.ahau-6B	676.8-678.2	6B-6004	4	ICIM	80.0-86.0	3.11-5.79	4.8-5.8	0.12-0.14	Li et al., 2019
					GCIM	88.0	3.17	1.7	0.11	
					NWIM	91.8	0.01	7.7	0.22	
	Qgl.ahau-7A.2ª	446.4-496.9	7A-3738	3	ICIM	123.0	3.75-15.88	9.7-22.8	0.17-0.38	Novel for GL;
					GCIM	122.8	5.59	6.3	0.22	Wang et al., 2017
					NWIM	63.2	0.02	9.5	0.20	(KNS)

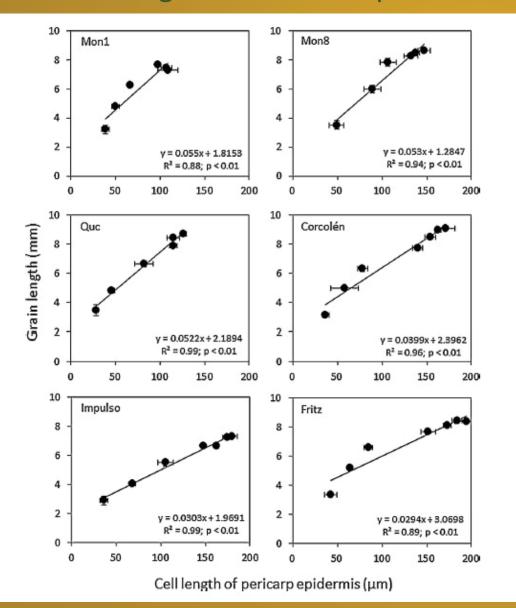
Determinación de los componentes del rendimiento en trigo



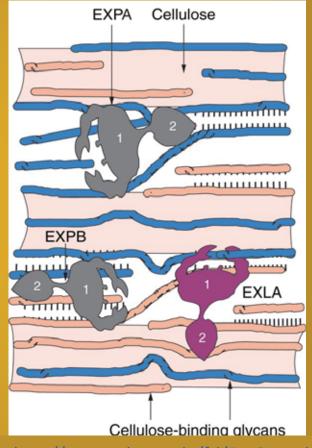
Incremento térmico pre-antesis sobre el peso de granos


Ugarte, Calderini & Slafer (2007) Field Crops Research

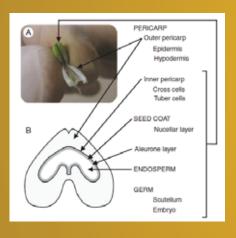
Determinación de los componentes del rendimiento en trigo

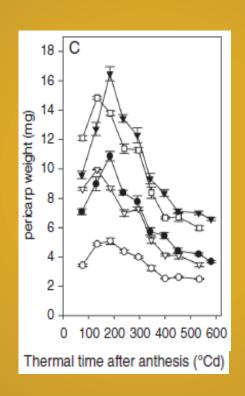


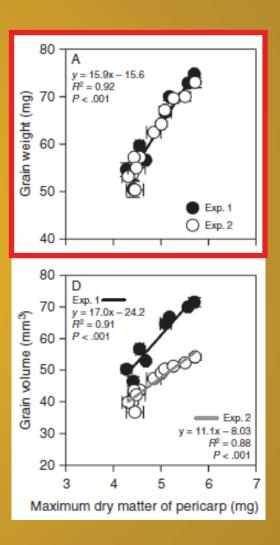
Esquema Slafer & Rawson (1995)


Sensibilidad del peso de grano de trigo en distintas condiciones ambientales de Australia

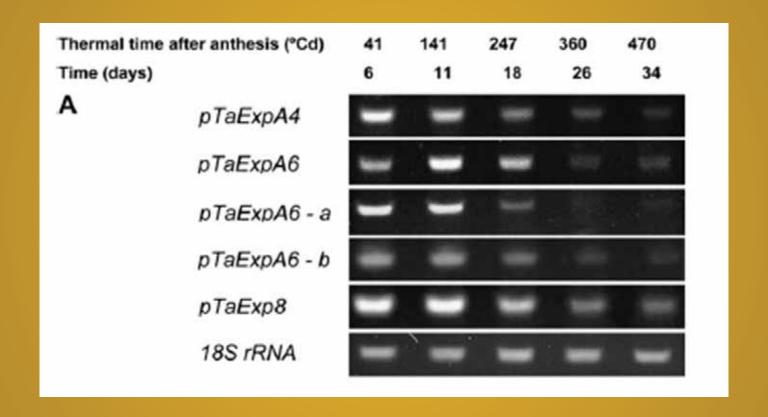
Relación entre el largo de grano y el largo de las células del pericarpio en trigos de diferente ploidía


Las expansinas son agentes primarios en el ablandamiento de la pared celular




http://personal.psu.edu/fsl/ExpCentral/

Muñoz & Calderini (2015) Field Crops Research


Relación entre el peso final del grano y el peso máximo del pericarpio (Experimentos de incremento térmico y reducción de la densidad de siembra)

Expansin expression in grain wheat pericarp

Overexpresión de la expansina *lb*Exp1 en *Arabidopsis* Incrementó el tamaño de semilla

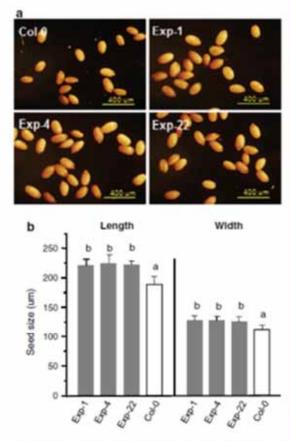


Fig. 2 Seed development in *IbEXP1*-ox plants, a Seed phenotype in *IbEXP1*-ox plants. Seeds were harvested at 10 weeks after planting and air-dried for more than 2 weeks, b Seed size comparison between *IbEXP1*-ox plants and Col-0 plants. Mean values of >50 seeds from at least six different plants with standard deviations are shown. *Different letters above the bars* indicate significantly different means (*P* < 0.05) as analyzed by Duncan's multiple range test using the IBM SPSS Statistics 21 program, a, b *Exp-1*, 4, and 22 represent *IbEXP1*-ox lines #1, #4, and #22, respectively

El incremento térmico afectó la expresión de expansinas y las propiedades de la pared celular en trigo

RESEARCH ARTICLE

Open Access

High post-anthesis temperature effects on bread wheat (*Triticum aestivum L.*) grain transcriptome during early grain-filling

Richard I. Kino¹, Till K. Pellny², Rowan A. C. Mitchell², Asier Gonzalez-Uriarte^{2,3} and Paola Tosi^{1*}

Hierarchical clustering and gene ontology analysis resulted in the identification of a number of genes implicated in the regulation of cell wall expansion, predominantly expressed in the pericarp and significantly down-regulated under high p.a. temperatures, including endoglucanase, xyloglucan endotransglycosylases and a β -expansin. An over-representation of genes involved in the 'cuticle development' functional pathway that were expressed in the pericarp and affected by high p.a. temperatures was also observed.

Table 1 Knetminer output of the ten highest relevance scores of genes from pericarp specific cluster 2 cross-referenced with the search term 'cell wall'. *Unknown protein encoded.

Accession number	Gene name	Protein encoded	Protein Function	Relevance
				score
TRIAE_C\$42_4AL_TGACv1_289281_AA0968300		Endoglucanase	cell wall assembly	544.88
	GLU2/KOR3			
TRIAE_CS42_4DS_TGACV1_363068_AA1183220	GLU2/KOR3	Endoglucanase	cell wall assembly	544.88
TRIAE_CS42_4BS_TGACV1_330027_AA1105540	GLU2/KOR3	Endoglucanase	cell wall assembly	537.96
TRIAE_C\$42_7DL_TGACv1_603404_AA1983010	XTH17	Xyloglucan	cell wall reconstruction and expansion	249.43
		endotransglucosylase		
TRIAE_CS42_7AL_TGACv1_556014_AA1752680	XTH	Xyloglucan	cell wall reconstruction and expansion	234.03
		endotransglucosylase		
TRIAE_CS42_1DL_TGACV1_062395_AA0213780	NIP1-2	Nod26-like-intrinsic-	facilitate water transport in and out of cells	122.99
		protein/Aquaporin		
TRIAE_CS42_6AS_TGACV1_485265_AA1542080	EXP85	Beta-expansin	facilitate cell wall expansion	82.19
TRIAE_CS42_3AL_TGACV1_195682_AA0652690	PRP2	proline rich protein	specify cell-type specific wall structures	47.57
TRIAE CS42 U TGACv1 641891 AA2106790	PAS2	n/a*	Involved in cell division and differentiation	47.37

Estrategias para quebrar los trade-off e incrementar el rendimiento

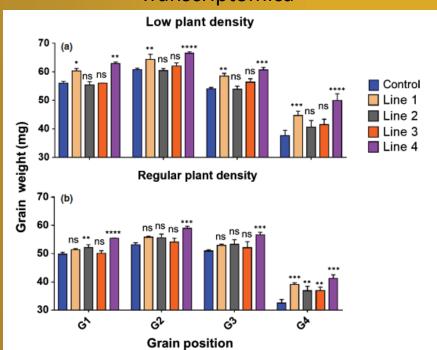
Llamado de NIAB para propuestas de transformación de *Arabidopsis*, Trigo y Cebada

Community Resource for Wheat Transformation

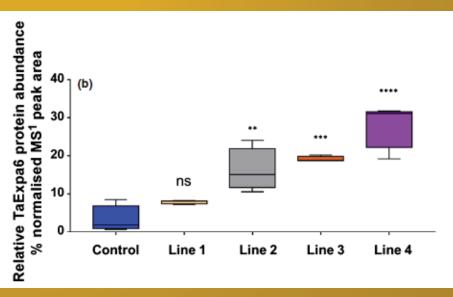
Wheat transformation to increase grain yield and industrial quality by improving kernel weight

Simon McQueen-Mason & Daniel Calderini

We propose to overexpress wheat ExpA 6, using the previously characterized gene promoter. A common feature of this diverse group of genes is that their expression is restricted to the developing kernel but not to the embryo, leaf, root or shoot as the transcription was found restricted to the endosperm, aleurone and pericarp layers in developing kernels. The expression was confirmed later in aleurone and endosperm tissues and in endosperm and pericarp at very early stages (3–9 DPA) of kernel development.



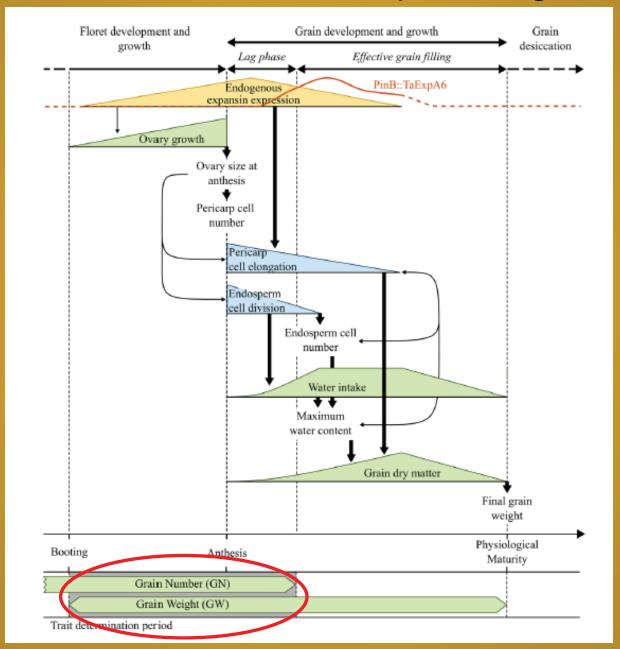
Overcoming the trade-off between grain weight and number in wheat by the ectopic expression of expansin in developing seeds leads to increased yield potential


Daniel F. Calderini¹ D, Francisca M. Castillo^{1,2} D, Anita Arenas-M^{1,2} D, Gemma Molero³ D, Matthew P. Reynolds³ D, Melanie Craze⁴ D, Sarah Bowden⁴ D, Matthew J. Milner⁴ D, Emma J. Wallington⁴ D, Adam Dowle⁵ D, Leonardo D. Gomez⁵ D and Simon J. McQueen-Mason⁵ D

¹Institute of Plant Production and Protection, Universidad Austral de Chile, Campus Isla Teja, Valdivia 5090000, Chile; ²Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile; ³International Maize and Wheat Improvement Center (CIMMYT), El Batán, Texcoco CP 56237, Mexico; ⁴NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK; ⁵CNAP, Biology Department, University of York, Wentworth Way, Heslington, York, YO10 5YW, UK

Transcriptómica

Rendimiento y componentes en vástagos principales, macollos y total de líneas transgénicas con la ExpA6 y el WT


Table 2 Grain yield (GY), grain number (GN), and average grain weight (GW) per square metre of main stems, secondary tillers, and total in transformed lines and the control recorded in the field experiment at regular plant density of 300 m⁻².

	Main ste	ms				V-1	Tillers	1 20					Total					
11	GY (g m ⁻²)		GN (m ⁻²)		GW (mg)		GY (g m ⁻²)		GN (m ⁻²)		GW (mg)		GY (g m ⁻²)		GN (m ⁻²)		GW (mg)	
Wheat line	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM	Mean	SEM
Line 4	524 **	10.3	11 124 ns	347	47.1 ****	0.6	563 ns	30.3	13 148 ns	499	42.7 **	0.8	1086 *	39.2	24 272 ns	814	44.8 **	0.4
Line 1	533 **	42.5	12 533 *	972	42.5 ns	0.1	516 ns	45.2	12836 ns	1127	40.2 ns	0.4	1049 ns	77.2	25 369 ns	1803	41.3 *	0.3
Line 2	464 ns	9.1	10756 ns	374	43.3 ns	1.5	469 *	39.7	11627 *	1359	40.7 ns	1.5	934 ns	39.3	22 382 ns	1684	41.9 ns	1.6
Line 3	459 ns	45.0	11 520 ns	950	39.8 ns	1.7	449 **	35.0	12709 ns	634	35.2 **	1.1	907 ns	79.9	24 229 ns	1572	37.4 ns	1.4
Control	441	19.7	10 781	424	40.6	1.0	535	17.0	13 5 13	322	39.1	0.5	976	35.8	24 294	724	39.8	0.6
ANOVA (P-value)	0.092*		0.270 ns		0.019**		0.039**		0.379 ns		0.010**		0.073*		0.455 ns		0.012**	
Line 4 and control (%)	18.9		3.2		16.0	(5.1		-2.7		9.2		11.3		(-0.1)	(12.3	

ANOVA P-value and relative difference (%) for each trait between line 4 and the control is shown at the bottom of the table.

All data are shown as mean and SEM. Control line corresponds to spring wheat cv Fielder that has undergone the same tissue culture process as the transformed lines. The phenotype data of each line was compared with control using Fisher's least significant difference test $post\ ho\ c$; asterisks indicate significant effects: *, P < 0.10; ***, P < 0.05; ****, P < 0.001; ns, not significant.

Esquema de la determinación del peso de grano en trigo

Otras estrategias en trigo y otros cultivos

Número de granos en trigo

Unleashing floret fertility in wheat through the mutation of a homeobox gene

Shun Sakuma^{a,b,c,1}, Guy Golan^d, Zifeng Guo^b, Taiichi Ogawa^{a,e}, Akemi Tagiri^a, Kazuhiko Sugimoto^{a,f}, Nadine Bernhardt^g, Jonathan Brassac^g, Martin Mascher^{h,i}, Goetz Hensel^j, Shizen Ohnishi^k, Hironobu Jinno^k, Yoko Yamashita^l, Idan Ayalon^d, Zvi Peleg^d, Thorsten Schnurbusch^{b,m,1}, and Taka

^aAgrogenomics Research Center, National Institute of Agrobiological Sciences, 305-8602 Tsukuba, Japan; Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany; ^cF Tottori, Japan; ^dThe Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew ^aInstitute of Agrobiological Sciences, National Agriculture and Food Research Organization, 305-8518 Ts Agriculture and Food Research Organization, 305-8518 Ts Crop Plant Research, 06466 Gatersleben, Germany; ^aIndependent Research Group Experimental Torp Plant Research, 06466 Gatersleben, Germany; ^aIndependent Research Group Domestication Genom Plant Research, 06466 Gatersleben, Germany; ^aIndependent Research Biodiversity Research Halle Group Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Experiment Station, Hokkaido Research Organization, 099-1496 Kunneppu, Japan; ^aCentral Agricultural Organization, 069-1395 Naganuma, Japan; and ^aInstitute of Agricultural and Nutritional Sciences, Facult Halle-Wittenberg, 06120 Halle, Germany

Peso de granos en arroz

ARTICLE

DOI: 10.3038/e41467-017-01501-0

OPEN

NOG1 increases grain production in rice

Xing Huo¹, Shuang Wu¹, Zuofeng Zhu¹, Fengxia Liu¹, Yongcai Fu¹, Hongwei Caloo ¹, Xianyou Sun¹, Ping Gu¹, Daoxin Xie², Lubin Tanoo ¹ & Chuanging Sun¹

Peso de granos en trigo sin mostrar rendimiento

Mol Breeding (2017) 37: 78 DOI 10.1007/s11032-017-0676-y

Cloning of TaTPP-6AL1 associated with grain weight in bread wheat and development of functional marker

Pengfei Zhang • Zhonghu He • Xiuling Tian • Fengmei Gao • Dengan Xu • Jindong Liu • Weie Wen • Luping Fu • Genying Li • Xinxia Sui • Xianchun Xia • Chunping Wang • Shuanghe Cao

Actividades actuales y futuras

Proyecto FONDECYT Regular 2021

Agencia Nacional de Investigación y Desarrollo

Ministerio de Ciencia, Tecnología, Conocimiento e Innovación

CONVENIO FINANCIAMIENTO PROYECTO FONDECYT REGULAR 2021

AGENCIA NACIONAL DE INVESTIGACIÓN Y DESARROLLO-FONDECYT/INVESTIGADOR(A) RESPONSABLE/INSTITUCIÓN(ES) PATROCINANTE(S)

En Santiago de Chile, a 05 de marzo de 2021, comparecen, por una parte, la Subdirectora de Proyectos de Investigación de la Agencia Nacional de Investigación y Desarrollo, en adelante la Agencia, que se individualiza al final del presente instrumento, en representación de esta entidad domiciliada para estos efectos en calle Moneda 1375, comuna de Santiago, y, por la otra parte, el(la)Investigador(a) Responsable y la(s) Institución(es) Patrocinante(s) que se individualizan al final del presente convenio, quienes acuerdan lo siguiente:

PRIMERO: ANTECEDENTES DEL PROYECTO

La Agencia declara que en el Concurso Nacional de Proyectos FONDECYT Regular 2021 ha sido aprobado el proyecto N°1211040 (Anexo N°1), titulado: "UNRAVELLING THE MECHANISMS CONTROLLING THE TRADE-OFF BETWEEN KERNEL WEIGHT AND GRAIN NUMBER TO IMPROVE YIELD AND CROP ADAPTATION OF WHEAT", con una duración de 4 años, por un monto total de \$240.900.000, como se indica a continuación:

Convenio Bioceres – UACh – Universty of York - NIAB

MUTUAL NONDISCLOSURE AGREEMENT

THIS MUTUAL NONDISCLOSURE AGREEMENT ("Agreement") is entered into on the day the last Party to sign it signs it, ("Effective Date"), by and between (i) Bioceres Crop Solutions Corp. (BCP), a Cayman Islands exempted company, having offices at Ocampo 210bis, 2000, Rosario, Santa Fe, Argentina; (ii) Universidad Austral de Chile (UACh), a nonprofit educational corporation having offices at Independencia 631, Valdivia, Chile; (iii) University of York (UYork) a body incorporated in England and Wales by Royal Charter with registration number RC000679, whose principal offices are at Heslington, York, YO10 5DD, United Kingdom; and (iv) and NIAB 93, Lawrence Weaver Road, Cambridge, CB3 0LE, United Kingdom. Collectively BCP, UACh, UYork and NIAB may also be referred to as the "Parties" and individually as a "Party."

RECITALS:

WHEREAS, BCP, UACh, UYork and NIAB are each engaged in research and development of wheats that overexpress expansion only in grains using a promoter such as that used in Calderini et al. (2020) by genetic engineering or by gene editing to increase grain weight and crop yield;

WHEREAS, BCP, UACh, UYork and NIAB each have expertise and information in their respective research areas which they each desire to retain as confidential and proprietary; and

WHEREAS, the Parties desire to enter into discussions and possibly a business arrangement to carry out research activities;

NOW, THEREFORE, in consideration of the promises and covenants hereinafter contained and other good and valuable consideration the receipt of which is acknowledged, the Parties agree as follows:

 "Purpose" shall mean the disclosure between the Parties of their respective Confidential Information under terms that will protect the confidential and proprietary nature of such information, and thereby allowing the Parties to discuss possibly entering into and actually carrying out business and research activities in the area of increasing grain weight and yield inwheat.

Estudio de resiliencia en trigo y raps

Canala	Expt.	Treatment		GN	TG	w	Grain protein		
Specie			(10 ³ m ⁻²)	Change (%)	(g)	Change (%)	(%)	Change (%)	
Wheat	Va	С	21 ± 2 a	8	64.2 ± 2.1 a	-	10.5 ± 0.2 a	+	
		S	20 ± 1 a	-5.7	59.1 ± 0.8 a	-7.9	10.6 ± 0.2 a	0.4	
		HT	24 ± 1 a	13.6	60.6 ± 0.4 a	-5.6	11.0 ± 0.2 a	4.3	
		S+HT	23 ± 1 a	6.9	59.0 ± 1.3 a	-8.0	10.8 ± 0.2 a	2.1	
	BA	С	19 ± 3 a	=	56.6 ± 0.7 a	1- 1	12.8 ± 0.5 a	+	
		S	16 ± 1 a	-19.7	50.0 ± 1.0 b	-11.6	14.4 ± 1.4 a	12.7	
		HT	15 ± 1 a	-23.8	49.7 ± 2.6 b	-12.1	13.0 ± 0.4 a	1.7	
		S+HT	13 ± 1 a	-32.9	42.9 ± 0.9 c	-24.2	14.7 ± 1.0 a	15.0	

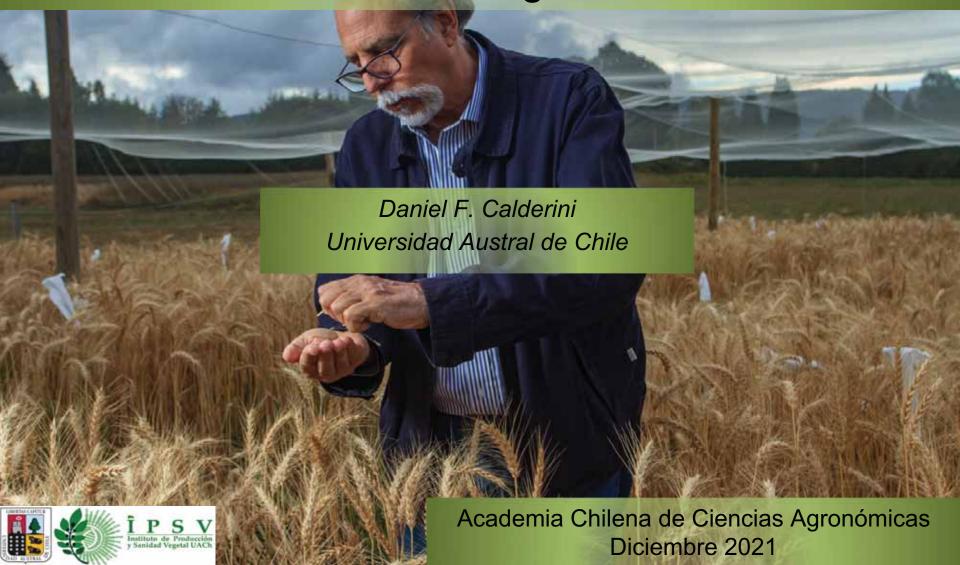
Mean \pm standard error of mean. Different letters indicate significant differences between treatments within each experiment (p<0.05)

Specie	Expt.	Treatment	GN		TGW			Grain oil				Grain protein	
			(10 ³ m ⁻²)	Change (%)	(g)		Change (%)		(%)		Change (%)	(%)	Change (%)
Rapeseed			313 ± 17 a		2.9 ± 0.1	а	•	48.2	48.2 ± 0.2	а	-	17.9 ± 0.5 a	-
		S	219 ± 19 b	-31.6	3.6 ± 0.1	bc	24.4	48.2	± 0.3	a	0.0	18.9 ± 0.3 a	5.5
		HT	270 ± 24 ab	-14.2	3.3 ± 0.1	b	12.2	48.4	± 0.1	a	0.4	18.8 ± 0.3 a	5.1
		S+HT	194 ± 24 b	-39.5	4.2 ± 0.1	c	42.7	48.1	± 0.3	a	-0.1	19.6 ± 0.5 a	9.5
	ВА	С	151 ± 11 a	*	3.2 ± 0.1	а	(10)	43.9	± 0.7	a	÷	21.9 ± 0.6 c	,#i
		S	97 ± 10 b	-36.1	3.7 ± 0.1	а	13.5	40.8	± 1.1	a	-7.1	24.4 ± 0.7 ab	11.2
		HT	125 ± 15 ab	-17.1	3.2 ± 0.1	а	0.4	43.5	± 1.5	a	-0.9	22.6 ± 1.2 bc	3.1
		S+HT	116 ± 11 ab	-23.2	2.4 ± 0.3	b	-24.6	40.4	± 1.0	а	-8.1	25.1 ± 0.8 a	14.7

Mean ± standard error of mean. Different letters indicate significant differences between treatments within each experiment (p<0.05)

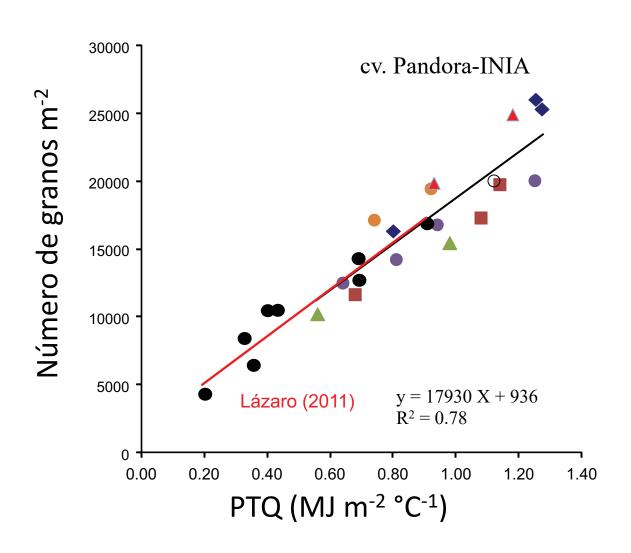
CONCLUSIONES

- La seguridad alimentaria, el cambio climático y la sustentabilidad son los mayores desafíos de la agricultura del siglo 21
- Para incrementar el rendimiento de trigo existen trade-offs que no son simples de quebrar y no los conocemos en profundidad
- La superposición en la determinación del número y el peso de los granos entre bota y 10 DDA podría ser clave para romperá el trade-off
- Puede haber algunas alternativas para incrementar los rendimientos complementando e integrando conocimientos de distintos niveles de organización (biología molecular, genética, fisiología y agronomía)
- La comprensión de la resiliencia que experimentan diversos cultivos en el sur de Chile nos podría proveer herramientas para lograr la adaptación de los cultivos al cambio climático

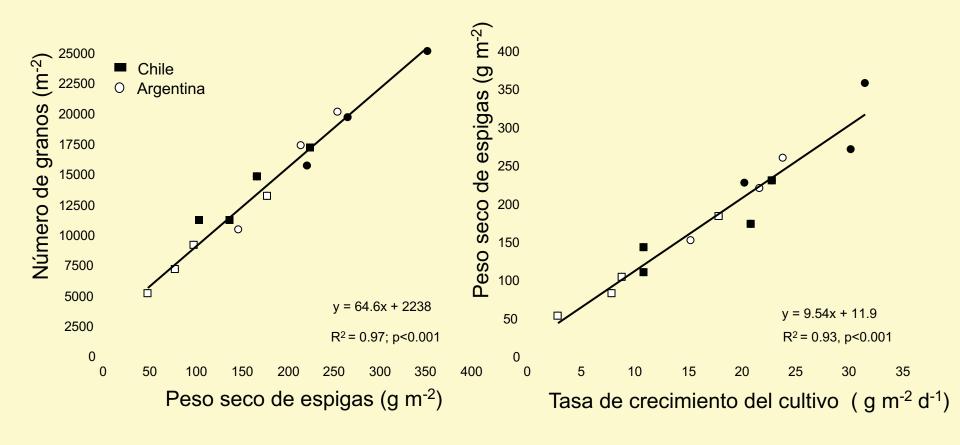

Agradecimientos

A la Academia Chilena de Ciencias Agronómicas, sus presidentes y miembros

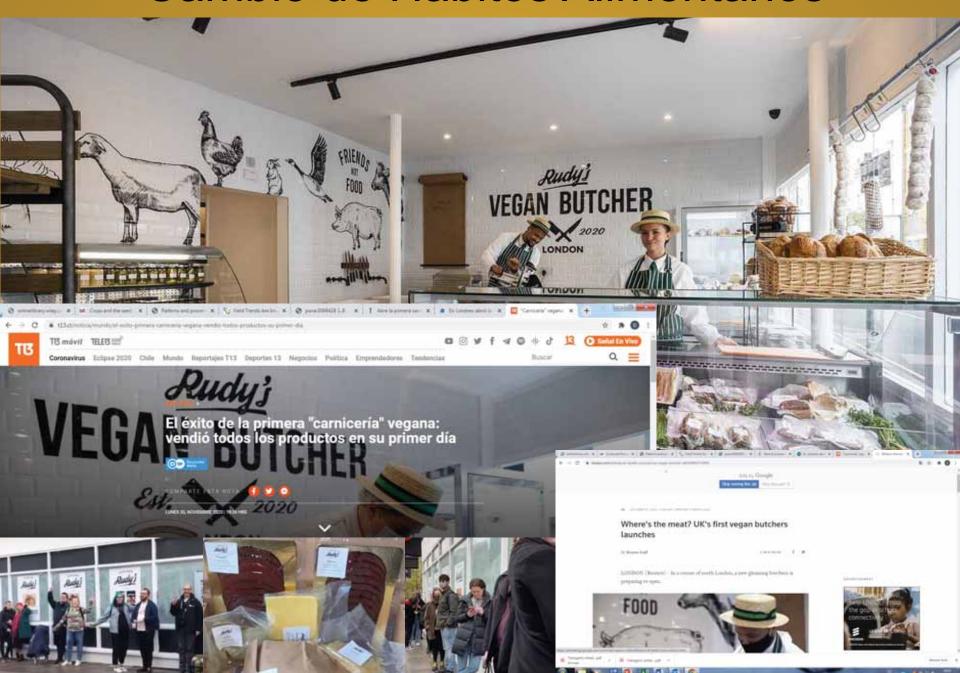
A Gustavo Slafer, Roxana Savin, Gabriela Abeldo, Daniel Miralles, Carolina Lizana, Patricio Sandaña, Alejandro Quintero, Francisca Castillo, Jaime Herrera, Daniela Bustos-Kort, Gonzalo Rivelli, Déborah Rondanini, el personal del campo experimental de la FA-UBA y de la EEAA.


A todas/os, iMUCHAS GRACIAS!

Estrategias para incrementar el rendimiento de trigo quebrando el *trade-off* entre el peso y el número de granos



Relación entre el número de granos y el cociente fototermal en trigo


Relaciones Funcionales con el Número de Granos en Trigo

Lázaro et al. (2009) Field Crops Research

Sandaña & Pinochet (2011) Field Crops Research

Cambio de Hábitos Alimentarios

